12. Circle C_1 has equation $(x-13)^2 + (y+4)^2 = 100$.
Circle C_2 has equation $x^2 + y^2 + 14x - 22y + c = 0$.

(a) (i) Write down the coordinates of the centre of C_1.
(ii) The centre of C_1 lies on the circumference of C_2.
Show that $c = -455$.

The line joining the centres of the circles intersects C_1 at P.

(b) (i) Determine the ratio in which P divides the line joining the centres of the circles.
(ii) Hence, or otherwise, determine the coordinates of P.

P is the centre of a third circle, C_3.
C_2 touches C_3 internally.

(c) Determine the equation of C_3.
Answers

(a) (i) (13, -4)

(ii) Substitute coordinates and process leading to $c = -455$

(b) (i) 3 : 2 or 2 : 3

(ii) $P (5, 2)$

(c) $(x - 5)^2 + (y - 2)^2 = 1600$

 or $x^2 + y^2 - 10x - 4y - 1571 = 0$