FORMULAE LIST

Circle:
The equation \(x^2 + y^2 + 2gx + 2fy + c = 0 \) represents a circle centre \((-g, -f)\) and radius \(\sqrt{g^2 + f^2 - c} \).
The equation \((x-a)^2 + (y-b)^2 = r^2\) represents a circle centre \((a, b)\) and radius \(r\).

Scalar Product: \[\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta, \text{ where } \theta \text{ is the angle between } \mathbf{a} \text{ and } \mathbf{b} \]
or \[\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \text{ where } \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}. \]

Trigonometric formulae:
\[
\begin{align*}
\sin (A \pm B) &= \sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) &= \cos A \cos B \mp \sin A \sin B \\
\sin 2A &= 2 \sin A \cos A \\
\cos 2A &= \cos^2 A - \sin^2 A \\
&= 2 \cos^2 A - 1 \\
&= 1 - 2 \sin^2 A
\end{align*}
\]

Table of standard derivatives:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin ax)</td>
<td>(a \cos ax)</td>
</tr>
<tr>
<td>(\cos ax)</td>
<td>(-a \sin ax)</td>
</tr>
</tbody>
</table>

Table of standard integrals:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(\int f(x)dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin ax)</td>
<td>(-\frac{1}{a} \cos ax + c)</td>
</tr>
<tr>
<td>(\cos ax)</td>
<td>(\frac{1}{a} \sin ax + c)</td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>Year</th>
<th>Paper</th>
<th>Question</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>P2 Q8</td>
<td>A function, (f), is given by (f(x) = \frac{3}{x} + 8). The domain of (f) is (1 \leq x \leq 1000, \ x \in \mathbb{R}). The inverse function, (f^{-1}), exists. (a) Find (f^{-1}(x)). (b) State the domain of (f^{-1}).</td>
<td>3</td>
</tr>
<tr>
<td>2019</td>
<td>P1 Q12</td>
<td>Functions (f) and (g) are defined by (f(x) = \frac{1}{\sqrt{x}},) where (x > 0) and (g(x) = 5 - x,) where (x \in \mathbb{R}). (a) Determine an expression for (f(g(x))). (b) State the range of values of (x) for which (f(g(x))) is undefined.</td>
<td>2 1</td>
</tr>
<tr>
<td>2018</td>
<td>P1 Q2</td>
<td>A function (g(x)) is defined on (\mathbb{R}), the set of real numbers, by (g(x) = \frac{1}{5} x - 4). Find the inverse function, (g^{-1}(x)).</td>
<td>3</td>
</tr>
<tr>
<td>2018</td>
<td>P2 Q6</td>
<td>Functions, (f) and (g), are given by (f(x) = 3 + \cos x) and (g(x) = 2x, \ x \in \mathbb{R}). (a) Find expressions for (i) (f(g(x))) and (ii) (g(f(x))).</td>
<td>2 1</td>
</tr>
<tr>
<td>2017</td>
<td>P1 Q1</td>
<td>Functions (f) and (g) are defined on suitable domains by (f(x) = 5x) and (g(x) = 2 \cos x). (a) Evaluate (f(g(0))). (b) Find an expression for (g(f(x))).</td>
<td>3</td>
</tr>
<tr>
<td>2017</td>
<td>P1 Q6</td>
<td>A function, (h), is defined by (h(x) = x^3 + 7), where (x \in \mathbb{R}). Determine an expression for (h^{-1}(x)).</td>
<td>1 2</td>
</tr>
<tr>
<td>Year</td>
<td>Question</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **2016 P1 Q6** | Functions f and g are defined on \mathbb{R}, the set of real numbers. The inverse functions f^{-1} and g^{-1} both exist.
(a) Given $f(x) = 3x + 5$, find $f^{-1}(x)$.
(b) If $g(2) = 7$, write down the value of $g^{-1}(7)$. |
| **2016 P1 Q12** | The functions f and g are defined on \mathbb{R}, the set of real numbers by $f(x) = 2x^2 - 4x + 5$ and $g(x) = 3 - x$.
(a) Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11$.
(b) Express $h(x)$ in the form $p(x+q)^2 + r$. |
| **2015 P1 Q5** | A function g is defined on \mathbb{R}, the set of real numbers, by $g(x) = 6 - 2x$.
(a) Determine an expression for $g^{-1}(x)$.
(b) Write down an expression for $g(g^{-1}(x))$. |
| **2015 P2 Q2** | Functions f and g are defined on suitable domains by $f(x) = 10 + x$ and $g(x) = (1 + x)(3 - x) + 2$.
(a) Find an expression for $f(g(x))$.
(b) Express $f(g(x))$ in the form $p(x+q)^2 + r$.
(c) Another function h is given by $h(x) = \frac{1}{f(g(x))}$. What values of x cannot be in the domain of h? |
| **2014 P2 Q3** | Functions f and g are defined on suitable domains by $f(x) = x(x - 1) + q$ and $g(x) = x + 3$.
(a) Find an expression for $f(g(x))$.
(b) Hence, find the value of q such that the equation $f(g(x)) = 0$ has equal roots. |
Functions and Roots

Functions f and g are defined on the set of real numbers by

- $f(x) = x^2 + 3$
- $g(x) = x + 4$.

(a) Find expressions for:
 (i) $f(g(x))$
 (ii) $g(f(x))$.

(b) Show that $f(g(x)) + g(f(x)) = 0$ has no real roots.

Functions and Equations

Functions f, g, and h are defined on the set of real numbers by

- $f(x) = x^3 - 1$
- $g(x) = 3x + 1$
- $h(x) = 4x - 5$.

(a) Find $g(f(x))$.

(b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 - 5x - 2$.

(c) (i) Show that $(x - 1)$ is a factor of $3x^3 + 4x^2 - 5x - 2$.
 (ii) Factorise $3x^3 + 4x^2 - 5x - 2$ fully.

(d) Hence solve $g(f(x)) + xh(x) = 0$.

Functions and Derivatives

Functions f and g are given by $f(x) = 3x + 1$ and $g(x) = x^2 - 2$.

(a) (i) Find $p(x)$ where $p(x) = f(g(x))$.
 (ii) Find $q(x)$ where $q(x) = g(f(x))$.

(b) Solve $p'(x) = q'(x)$.

Functions and Logarithms

Functions f, g, and h are defined on suitable domains by

- $f(x) = x^2 - x + 10$, $g(x) = 5 - x$ and $h(x) = \log_2 x$.

(a) Find expressions for $h(f(x))$ and $h(g(x))$.

Functions and Composite Functions

Functions f and g, defined on suitable domains, are given by $f(x) = x^2 + 1$ and $g(x) = 1 - 2x$.

Find:

(a) $g(f(x))$;

(b) $g(g(x))$.
3. Two functions f and g are defined by $f(x) = 2x + 3$ and $g(x) = 2x - 3$, where x is a real number.

 (a) Find expressions for:

 (i) $f(g(x))$;

 (ii) $g(f(x))$.

 (b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.

4. Functions $f(x) = 3x - 1$ and $g(x) = x^2 + 7$ are defined on the set of real numbers.

 (a) Find $h(x)$ where $h(x) = g(f(x))$.

 (b) (i) Write down the coordinates of the minimum turning point of $y = h(x)$.

 (ii) Hence state the range of the function h.

9. Functions $f(x) = \frac{1}{x - 4}$ and $g(x) = 2x + 3$ are defined on suitable domains.

 (a) Find an expression for $h(x)$ where $h(x) = f(g(x))$.

 (b) Write down any restriction on the domain of h.

9. The function f, defined on a suitable domain, is given by $f(x) = \frac{3}{x + 1}$.

 (a) Find an expression for $h(x)$ where $h(x) = f(f(x))$, giving your answer as a fraction in its simplest form.

 (b) Describe any restriction on the domain of h.

3. Functions f and g are defined on suitable domains by $f(x) = \sin (x^\circ)$ and $g(x) = 2x$.

 (a) Find expressions for:

 (i) $f(g(x))$;

 (ii) $g(f(x))$.

7. Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.

 (a) Find expressions for:

 (i) $f(h(x))$;

 (ii) $g(h(x))$.

3. $f(x) = 3 - x$ and $g(x) = \frac{3}{x}$, $x \neq 0$.

 (a) Find $p(x)$ where $p(x) = f(g(x))$.

 (b) If $q(x) = \frac{3}{3 - x}$, $x \neq 3$, find $p(g(x))$ in its simplest form.
8. Functions f and g are defined on the set of real numbers by

\[
\begin{align*}
 f(x) &= x - 1 \\
 g(x) &= x^2.
\end{align*}
\]

(a) Find formulae for

(i) $f(g(x))$

(ii) $g(f(x))$.