| 61 | Show that \(x = 1 \) is a root of
\[x^3 + 8x^2 + 11x - 20 = 0. \]
Hence factorise \(x^3 + 8x^2 + 11x - 20 \) fully. |
| --- | --- |
| 62 | The roots of the equation \(kx^2 - 3x + 2 = 0 \) are equal.
Calculate the value of \(k \). |
| 63 | Evaluate \(\log_2 \frac{1}{16} \). |
| 64 | Solve the equation \(3\cos 2x + \cos x = -1 \)
in the interval \(0 \leq x \leq 360 \). |
| 65 | The diagram shows a right-angled triangle with sides and angles marked. What is the value of \(\cos 2\alpha \)? |
| 66 | \(A = 2\pi r^2 + 6\pi r \).
What is the rate of change of \(A \) with respect to \(r \)
when \(r = 2 \)? |
| 67 | Find the equation of the tangent to the curve
\(y = x^3 - 3x^2 + 2x \) at the point where \(x = 1 \). |
| 68 | Find \(\int \frac{1}{3x^4} \, dx \), where \(x \neq 0 \). |
| 69 | Evaluate \(\int_{\frac{\pi}{2}}^{\pi} \sin 2x + \cos 2x \, dx \). |
| 70 | Write \(3\cos x^o + 4\sin x^o \) in the form \(k\cos(x + \alpha) \)
for \(k > 0 \) and \(0 \leq x \leq 360 \). |
Functions \(f \) and \(g \) are defined on the set of real numbers by \(f(x) = x^2 + 3 \) and \(g(x) = x + 4 \). Find expressions for \(f(g(x)) \) and \(g(f(x)) \).

The diagram shows part of the graph of \(y = \log_3(x - 4) \). The point \((q, 2)\) lies on the graph. What is the value of \(q \)?

Given that the ratio \(S(-4, 5, 1), T(-16, -4, 16) \) and \(U(-24, -10, 26) \) are collinear, calculate the ratio in which \(T \) divides \(SU \).

An equilateral triangle of side 3 units is shown. The vectors \(p \) and \(q \) are as represented in the diagram. What is the value of \(p.q \)?

Convert \(135^\circ \) into radians and convert \(\frac{2\pi}{3} \) into degrees.

Calculate the distance between the points \((4, -1)\) and \((7, 3)\).

A triangle has vertices \(P(1, 8), Q(-12, -2) \) and \(R(8, -6) \). Calculate the median \(PS \).

The line with equation \(y = 2x \) intersects the circle with equation \(x^2 + y^2 = 5 \) at the points \(J \) and \(K \). What are the \(x \)-coordinates of \(J \) and \(K \)?

A sequence is generated by the recurrence relation \(u_{n+1} = 0.7u_n + 10 \). What is the limit of this sequence as \(n \to \infty \)?

Calculate the shaded area shown in the diagram.