Read carefully

Calculators may **NOT** be used in this paper.

Section A – Questions 1 – 20 (40 marks)

Instructions for completion of Section A are given on page two.

For this section of the examination you must use an **HB pencil**.

Section B (30 marks).

1. Full credit will be given only where the solution contains appropriate working.

2. Answers obtained by readings from scale drawings will not receive any credit.
SECTION A

ALL questions should be attempted.

1. The midpoint of the line joining $G(-1, 3, 7)$ to $H(5, -1, p)$ is $M(q, 1, 4)$. What are the values of p and q?

2. Given that $f(x) = \frac{1}{3x^5}$, find $f'(x)$.

3. If $x^2 + 12x + 7$ is written in the form $(x + a)^2 + r$, find the value of r.

4. A straight line passes through the points $(4, 3)$ and $(0, -1)$. What is the equation of the line?

5. Functions f and g are defined on the set of real numbers by

 $f(x) = x^2 + 1$ and $g(x) = 3x - 5$

 What is the value of $g(f(-1))$?

6. The vectors with components $\begin{pmatrix} 4 \\ 7 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ t \\ -2 \end{pmatrix}$ are perpendicular. What is the value of t?

7. The diagram shows a right-angled triangle with sides 1, 3 and $\sqrt{10}$.
 What is the value of $\cos 2x$?

8. Find $\int_{-2}^{0} 6x^2 \, dx$

9. For what value of k does the equation $2x^2 - 4x + k = 0$ have equal roots?
10. \overrightarrow{DE} and \overrightarrow{EF} have components \[
\begin{pmatrix} 5 \\ 2 \\ 3 \\
\end{pmatrix} \text{ and } \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}
\] respectively.

Given that D has coordinates $(-2, 0, -2)$, what are the coordinates of F?

11. What is the maximum value of $8 - 3 \sin \left(x - \frac{7\pi}{9} \right)$?

12. Find $\int (2x + 5)^3 \, dx$.

13. How many solutions does the equation $(\sqrt{7} \cos x + 3)(4 \tan x - 9) = 0$ have in the interval $0 \leq x < 2\pi$?

14. Given that $f(x) = 4 \sin 3x$, find $f'(\frac{\pi}{6})$.

15. The diagram shows the line ST with equation $2x + y = 0$.

The angle between ST and the positive direction of the x-axis is θ.

Find an expression for θ.

A $\theta = \tan^{-1} \frac{1}{2}$
B $\theta = \pi - \tan^{-1} \frac{1}{2}$
C $\theta = \tan^{-1} 2$
D $\theta = \pi - \tan^{-1} 2$

16. What is the value of $\log_2 32 - \log_2 8$?

17. The diagram shows a sketch of the curve with equation $y = k(x + 2)(x - 2)(x + a)$

What are the values of a and k?

18. Here are two statements about the function $f(x) = \sqrt{x^2 - 4}$.

(1) The largest possible domain is $-2 \leq x \leq 2$.
(2) The range is $f(x) \geq 0$.

Which of these statements is true?

19. Given that
\begin{align*}
f'(x) &= \begin{cases}
> 0, & \text{for } x < 3 \\
= 0, & \text{for } x = 3 \\
> 0, & \text{for } x > 3
\end{cases}
\end{align*}
Sketch a curve to represent \(y = f(x) \)?

20. If \(5^x = a^2 \), find an expression for \(x \).

End of Section A
SECTION B

ALL questions should be attempted.

21. A(−2, 4), B(10, 4) and C(4, 8) are the vertices of triangle ABC shown in the diagram.

\[\text{(a) Write down the equation of the altitude from C.} \]
\[\text{(b) Find the equation of the perpendicular bisector of BC.} \]
\[\text{(c) Find the point of intersection of the lines found in (a) and (b).} \]

22. P is the point (4, 1, −2), Q is (5, 2, 0) and R is (7, 4, 4).

\[\text{(a) Show that P, Q and R are collinear.} \]
\[\text{(b) Find the ratio in which Q divides PR.} \]
23. Find the equation of the tangent to the curve with equation
\[y = \frac{4}{x} \]
at the point where \(x = 2 \).

24. (a) Given that \(f'(x) = 3x^2 + 2x - 10 \) and \((x - 2) \) is a factor of \(f(x) \), find a formula for \(f(x) \).

(b) Hence factorise \(f(x) \) fully.

(c) Solve \(f(x) = 0 \).

25. The graph illustrates the law \(y = ax^b \).

The straight line joins the points \((0, 4) \) and \((1, 0) \).

Find the values of \(a \) and \(b \).
ALL questions should be attempted.

1. A sequence is defined by recurrence relation \(u_{n+1} = ku_n - 6, u_0 = 0 \).

 (a) Given that \(u_2 = -8 \), find the value of \(k \).

 (b) (i) Why does this sequence tend to a limit as \(n \to \infty \) ?

 (ii) Find the value of this limit.

2. \(f(x) = 2x^3 + px^2 + qx + 4 \).

 Given that \((x - 2) \) is a factor of \(f(x) \), and the remainder when \(f(x) \) is divided by \((x + 1) \) is 9, find the values of \(p \) and \(q \).

3. Security guards are watching a parked car, via two CCTV cameras, in a supermarket car park.

 With reference to a suitable set of axes, the car is at \(C(5, 3, 2) \) and the cameras are at positions \(A(-1, 6, 4) \) and \(B(7, 9, 5) \) as shown.

 Calculate the size of angle \(ACB \).
4. Part of the graphs of \(y = 3 - x - x^2 \) and \(y = 5 - 2x^2 \) are shown opposite.

The curves intersect at the points S and T.

(a) Find the coordinates of S and T.

(b) Find the shaded area enclosed between the two curves.

5. A circle with centre \(C_1 \) has equation \(x^2 + y^2 - 2x - 6y - 15 = 0 \).

(a) Write down the coordinates of the centre and calculate the length of the radius of this circle.

A second circle with centre \(C_2 \) has a diameter twice that of the circle with centre \(C_1 \).

\(C_1 \) lies on the circumference of this second circle.

The line joining \(C_1 \) and \(C_2 \) is parallel to the x-axis.

(b) Find the equation of the circle with centre \(C_2 \).
6. A manufacturer of executive desks estimates that the weekly cost, in £, of making x desks is given by $C(x) = x^3 - 6x^2 + 560x + 800$.

(a) Show that the weekly profit made from making x desks is given by

$$P(x) = -x^3 + 6x^2 + 1440x - 800$$

(b) (i) How many desks would the manufacturer have to make each week in order to maximise his profit?

(ii) What would his annual profit be?

7. The number of bacteria, b, in a culture after t hours is given by $b = b_0 e^{kt}$ where b_0 is the original number of bacteria present.

(a) The number of bacteria in a culture increases from 800 to 2400 in 2 hours.

Find the value of k correct to 3 significant figures.

(b) How many bacteria, to the nearest hundred, are present after a further 4 hours?

8. (a) Express $2\cos x - 5\sin x$ in the form $k\cos(x + a)$, where $k > 0$ and $0 < a < 90$.

(b) (i) Hence write $2\cos 2x - 5\sin 2x$ in the form $R\cos(2x + b)$, where $R > 0$ and $0 < b < 90$.

(ii) Solve $2\cos 2x - 5\sin 2x = 5$ in the interval $0 \leq x < 360$.

End of Question Paper